Antegrade iliac artery stent implantation for the temporal and spatial examination of stent-induced neointimal hyperplasia and alterations in regional fluid dynamics.
نویسندگان
چکیده
INTRODUCTION Neointimal hyperplasia remains an important problem after stent implantation. Previous investigations examining vascular responses to stent implantation and effects of drugs have used a retrograde deployment approach that may inadvertently alter the local fluid dynamics surrounding the stent. We present a model of antegrade iliac artery stent implantation that facilitates the analysis of stent-induced alterations in neointimal hyperplasia and wall shear stress in vivo. METHODS Stent delivery catheters were inserted through the left carotid artery in anesthetized rabbits (n=37). Catheters were advanced under fluoroscopic guidance to the distal iliac arteries, where the stent was deployed. Hemotoxylin and eosin (H&E) staining of unstented and stented vascular sections was performed 21 days after implantation. RESULTS Selective unilateral stent implantation was successful in 32 of 37 rabbits. No histological abnormalities were observed in the aorta, contralateral unstented iliac, or distal femoral arteries. Neointimal hyperplasia was localized to the stented region. DISCUSSION The model of stent implantation was relatively easy to perform and produced selective neointimal hyperplasia within the stented region without evidence of damage, cellular proliferation, or flow disruption in the surrounding normal arterial vessels. The model will allow detailed examination of the influence of stent implantation on indices of wall shear stress, neointimal hyperplasia, the mechanisms of cellular proliferation in vivo, and their modification by drugs.
منابع مشابه
Alterations in wall shear stress predict sites of neointimal hyperplasia after stent implantation in rabbit iliac arteries.
Restenosis resulting from neointimal hyperplasia (NH) limits the effectiveness of intravascular stents. Rates of restenosis vary with stent geometry, but whether stents affect spatial and temporal distributions of wall shear stress (WSS) in vivo is unknown. We tested the hypothesis that alterations in spatial WSS after stent implantation predict sites of NH in rabbit iliac arteries. Antegrade i...
متن کاملMicrofocal X-ray computed tomography post-processing operations for optimizing reconstruction volumes of stented arteries during 3D computational fluid dynamics modeling
Restenosis caused by neointimal hyperplasia (NH) remains an important clinical problem after stent implantation. Restenosis varies with stent geometry, and idealized computational fluid dynamics (CFD) models have indicated that geometric properties of the implanted stent may differentially influence NH. However, 3D studies capturing the in vivo flow domain within stented vessels have not been c...
متن کاملTargeting CCR2 or CD18 inhibits experimental in-stent restenosis in primates: inhibitory potential depends on type of injury and leukocytes targeted.
A central role for leukocytes in neointimal hyperplasia after arterial injury is suspected. However, the relative importance of neutrophils and monocytes in balloon or stent-induced injury are not well understood, and mechanistic targeting of leukocyte recruitment or function is crude. We determined the temporal and spatial distribution of different leukocytes after balloon and stent-induced in...
متن کاملAlterations in regional vascular geometry produced by theoretical stent implantation influence distributions of wall shear stress: analysis of a curved coronary artery using 3D computational fluid dynamics modeling
BACKGROUND The success of stent implantation in the restoration of blood flow through areas of vascular narrowing is limited by restenosis. Several recent studies have suggested that the local geometric environment created by a deployed stent may influence regional blood flow characteristics and alter distributions of wall shear stress (WSS) after implantation, thereby rendering specific areas ...
متن کاملAxial stent strut angle influences wall shear stress after stent implantation: analysis using 3D computational fluid dynamics models of stent foreshortening
INTRODUCTION The success of vascular stents in the restoration of blood flow is limited by restenosis. Recent data generated from computational fluid dynamics (CFD) models suggest that the vascular geometry created by an implanted stent causes local alterations in wall shear stress (WSS) that are associated with neointimal hyperplasia (NH). Foreshortening is a potential limitation of stent desi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of pharmacological and toxicological methods
دوره 51 2 شماره
صفحات -
تاریخ انتشار 2005